

Neutrinoless Double Beta Decay: Experimental Review

Silvia Capelli

Universita` e Sez. INFN di Milano Bicocca Italy

Outline

- Introduction to $\beta\beta$ and $0\nu\beta\beta$ decay
- Experimental strategies
- Best achieved results to date
- Projects under development
- Prospects and conclusions
- Bibliography

Double Beta Decay

Neutrinoless Double Beta Decay

Besides the Standard Model allowed $\beta^{-}\beta^{-}$, other **more intriguing channels** have been proposed, i.e. $0\nu\beta\beta$, $0\nu\chi^{0}(\chi^{0})\beta\beta$

 $0\nu\beta\beta$ channel has become particularly compelling after the evidence of neutrino oscillations (i.e. evidence of a non zero neutrino mass)

$0\nu\beta\beta$ IMPLICATIONS IN PARTICLE PHYSICS :

- 1. L non conservation
- 2. Majorana nature of ν
- 3. Measure of absolute v mass scale
- 4. Determination of neutrino mass hierarchy
- 5. **CP** violation measure in the leptonic sector

$0\nu\beta\beta$ via light ν_{M}

 $0\nu\beta\beta$ can be mediated by the exchange of a variety of unconventional particles It's **amplitude depends** on their mass and coupling constants

For light v_{M} exchange the **Decay Rate** is:

$$(T_{0\nu})^{-1} \propto G_{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$
(1)
Phase Space Factor
ATOMIC PHYS.
$$ME_{NUCLEAR PHYS.} Effective Majorana mass PARTICLE PHYS.$$

Ονββ experimental signature ^(*)

Minimal information: two e⁻ energy sum spectrum

 $0\nu\beta\beta$ exhibits a **peak at Q** over $2\nu\beta\beta$ tail enlarged only by detector resolution

Additional signatures:

Single electron energy spectrum Angular correlation between the two electrons Track and event topology Time Of Flight Daughter nuclear specie

(*) Dealing only with direct counting experiments

Experimental sensitivity on T^{0v}

Defined as the lifetime corresponding to the minimum detectable number of events over background at a given C.L.

$$F_0 = \ln(2) N_{\beta\beta} \frac{T_{meas}}{n_{peak}} \epsilon$$

$$F_{0} \propto \frac{\epsilon a.i.}{A} \left(\frac{MT}{b\Delta E} \right)^{1/2} \quad b \neq 0$$

$$F_{0} \propto \frac{\epsilon a.i.}{A} (MT) \quad b=0$$
(3)

 F_{0v} involves only detector and set-up parameters:

- Source mass: M [kg]
- Measured bkg in the ROI: b [c/keV/kg/y]
- Detector resolution in the ROI: ΔE [keV]
- Measure livetime: T [y]
- Detecting efficiency for $0\nu\beta\beta$ events: ϵ
- Isotopic abundance: ai LowNu11, Seoul

Improvements on F_{0v} :

- Increasing exposition (MT)
- Better technology and detector performances (ΔE, ε)
- Lower background in the ROI (b)
- Isotopic enrichment

Sensitivity to <m _ >

$$F_{m} \propto \left(\frac{A}{\epsilon a.i.}\right)^{1/2} \frac{1}{G_{0v}(Q,Z)^{1/2} |M_{0v}|} \left(\frac{b \Delta E}{MT}\right)^{1/4} \mathsf{b} \neq \mathsf{0} \quad (4)$$

F_m **involves** also atomic and nuclear properties:

- Phase Space Factor: G_{0ν}(Q,Z) ÷ Q⁵
- Nuclear Matrix Elements: M _{0v}

Improvements on F_m : Good isotope choice

Discrepancies between **NME calculations** with different models: a **factor ~ 2 – 3** ^[1-4]

Isotope choice

The background issue

Which is the required bkg to have sensitivity to IH and NH (1 σ CL)?

Let's take ⁷⁶Ge as an example, M=1 t, i.a. 86%, ε =1, FWHM~0.15%, T=5y

For ~3 signal events an almost "background free" experiment is needed

Background reduction techniques:

- Operating **underground**
- Shields with increasing cleanliness + active vetoes
- Select clean materials for detector and set-up construction
- Select isotope with high Q-value (eg. ⁴⁸Ca, ⁸²Se, ¹⁰⁰Mo, ¹⁵⁰Nd
- Particle Id & location (eg. with tracking, PSA, light/heat...)
- Spectroscopic id of daughter nucleus (eg. ¹³⁶Ba++ tag)
- Good energy resolution (for $2\nu\beta\beta$ bkg a σ <2% is needed)

Experimental techniques

Two main approaches: **calorimetric** (source ≤ detector) or **external-source** detector

Calorimeters

Solid-state devices, bolometers, scintillators, gas/L detectors

- Constraints on **detector choice** (except for bolometers)
- Very large M possibles (demonstrated ~50kg, proposed ~1t)
- High efficiency $(\epsilon \sim 1)$
- Very high resolution ($\Delta E \sim 0.15\%$) with Ge-diodes, bolometers
- Event topology in gas/liquid Xe detectors or pixellization

External-source detectors

Scintillators, gas TPC, gas DC, magnetic field and TOF

- Difficult to get large source M
- Difficult to get high efficiency
- Difficult to get good resolution
- Event topology allowing "clean bkg" (except $2\nu\beta\beta$)
- Several $\beta\beta$ candidates can be studied with same det.

Οvββ status of the art

Experiments carried out so far had masses of ~ tens of kg of the $\beta\beta$ candidate Sensitivity in the QD region of the v mass spectrum

Heidelberg-Moscow Experiment

@LNGS 1990-2003

5 p-type HPGe detectors - 86% enriched in ⁷⁶Ge – 11 kg ⁷⁶Ge

 $N_{\beta\beta} = 8.7 \times 10^{25}$ $\epsilon \sim 80\%$ $\Delta E/E (FWHM) \sim 0.15\%$ Bkg ~ 0.11 c/keV/kg/y

2001- whole collaboration ^[6]: no $0\nu\beta\beta$ peak evidence 35.5 kg·y with PSA T_{1/2}^{0ν}> 1.9 x 10²⁵ y @90% CL <m_{ee}> < 0.22 ÷ 0.64 meV ^[1-4]

Part of the collaboration:

2001 ^[13]: **First claim for evidence at 2.2**σ with 54.98 kg·y statistics

- 2004 ^[12]: Claim for evidence at 4.2σ Added new statistics: 71.7 kg·y Bkg = 0.11 ± 0.01 c/keV/kg/y
- 2006 ^[11]: **Claim for evidence at > 6**σ New PSA methods partial statistics: 51.39 kg·y

energy, keV

LowNu11, Seoul

Silvia Capelli - $\beta\beta$ 0v: experimental review

Cuoricino Ref.[8]

@LNGS 2003-2008

TeO₂ bolometric detector - with natural Te - 11.34 kg ¹³⁰Te (34.167% i.a.) N₈₆= 5.2x10²⁵ $\epsilon \sim 87\%$ $\Delta E/E$ (FWHM) ~ 0.24% Bkg ~ 0.17 c/keV/kg/y

 $T_{1/2}^{0v}$ limit for decay on first 0^{+ 130}Xe excited state also reported in Ref.[15] LowNu11, Seoul Silvia Capelli - $\beta\beta0v$: experimental review

Nemo3 detector

@LSM 2002-2011 External source detector (50 mg/cm² foils) Tracking chamber (6180 DC in Geiger Mode) Calorimeter for E, TOF (1940 PI. Sc. blocks + PMTs) B=26 G for e⁺/e⁻ separation Rn box installed in October 2004

 $\Delta E/E$ (FWHM)~8%@3MeV ϵ ~ 18 % $2\nu\beta\beta$ bkg

7 Investigated isotopes: ⁴⁸Ca, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹⁵⁰Nd

Nemo3 results Ref.[14]

Precision measurement of $T_{1/2}^{2\nu}$ and evaluation of $T_{1/2}^{0\nu}$ lower limits @90%CL

Οvββ near future

 1-5 y: many experiments with M ~100-200 kg of ββ isotope will be able to scrutinize QD region (100-500 meV) and ⁷⁶Ge claim with different isotopes and methods.
 => a negative result will rule out QD hierarchy

5 - 10 y: many experiments with M ~ 1 t of ββ isotope will have sensitivity to enter the IH region (10-50 meV) of the v mass spectrum

Planned experiments

4 complementary approaches with different isotopes can be identified

Many project are proposed, I apologize for the ones that are not shown in this talk

Gerda^[17]

Ge diodes (86% enriched ⁷⁶Ge) in LAr cryostat (active in Phase II) in water tank (active) BEGe technology in Phase-II: better E resolution, Multi/Single interaction discrimination @LNGS Phase-I ~ end 2011 Phase-II ~ 2013

ββ candidate: ⁷⁶Ge – Q 2039 keV

Source Mass:

Phase-I: 18 kg $^{76}Ge - \textbf{N}_{_{\beta\beta}} \ 1.4 \ x10^{26}$ Phase-II: 40 kg $^{76}Ge - \textbf{N}_{_{\beta\beta}} \ 3.2 \ x10^{26}$

Projected Bkg: Phase-I: 0.01 c/keV/kg/y Phase-II: 0.001 c/keV/kg/y

Sensitivity $T_{1/2}^{0v}$: Phase-I: 2.5x10²⁵ y in 1 y Phase-II: 1.9x10²⁶ y in 5 y

Sensitivity on <m_>> :

Phase-I: Scrutinize **KK claim** (if true 7 $\beta\beta$ cts over 0.5 cts of bkg) in 1 y data taking **Phase-II:** $< m_{ee} > < 73 \div 203$ meV in 5 y **- QD region**

Gerda Status

Commissioning started in June 2010 with 1 string of 3 ^{nat}Ge for **setup bkg investigation** (found high ⁴²K contamination – from ⁴² Ar - but mostly solved) **In June 2011** deployed **1**st **string of** ^{enr}**Ge**

Resolution FWHM: 0.12% @ 1.3 MeV (obtained in a test with a BEGe prototype in LAr)

Demonstrated bkg: (^{enr}Ge string): < 0.06 c/keV/kg/y 90% CL (better than HM, IGEX)

Bkg reduction strategy: LAr active, BEGe technology allowing ID event topology

Majorana Demonstrator

BEGe detectors (20 kg ^{nat}Ge + 20 kg 86% enriched ⁷⁶Ge) in 2 conventional cryostats

GOAL: demonstrate bkg and feasibility, test KK claim @Sanford UL Start ~ 2014

ββ candidate: 76 Ge – Q 2039 keV

Source Mass: $30 \text{ kg}^{76}\text{Ge} - \mathbf{N}_{_{\mathbf{R}\mathbf{R}}} 2.4 \times 10^{26}$

Projected Bkg: 0.001 c/keV/kg/y (shields + BEGe techn.)

Sensitivity $T_{1/2}^{0v}$: 9x10²⁵ y in 5 y

Sensitivity <m__> : Scrutinize KK claim in < 2 y data taking <m_> < 106 ÷ 295 meV in 5y - QD region

Schedule: 2012: 2-3 ^{nat}Ge strings in prototype cryostat (19 ^{nat}Ge diodes in hand) **2013:** 3 strings ^{nat}Ge + 4 strings ^{enr}Ge below ground (1st cryostat) **2014:** full experiment LowNu11, Seoul

MAjorana-GErda

Joint Cooperative Agreement:

Open exchange of knowledge and technologies Select best technique developed and tested in GERDA and Majorana Intention to merge for 1 ton exp. (~2020)

=> factor ~ 2.5 on $\langle m_{ee} \rangle$: 43 ÷ 120 meV in 5 y (enter IH region)

CUORE [18-20]

988 TeO₂ (34.167% ai ¹³⁰Te) **bolometers at ~ 10 mK in a granular structure** (741 kg mass) **@LNGS** Phase-I: starts ~ end 2011 **Phase-II: ~ 2014** Future: enr., scintill. bolom...

CUORE Status

CUORE-0: - in commissioning, will start in a few months (end 2011) in CUORICINO cryostat

CUORE: - Hut construction, detector engineering and design completed - Crystal production, cryogenics (new cryostat, shields), electronics, DAQ in progress

Resolution FWHM: 0.2% @ Q_{BB} (already achieved)

Demonstrated bkg for CUORE-0: (TTT test): < 0.05 c/keV/kg/y (mainly degraded α from near surfaces, γ Compton from cryostat)

Bkg reduction strategy for CUORE: new cryostatwith optimized shields, controlled low activity materials, minimization of facing materials, surface contamination reduction, anticoincidence cut

up to date a projection	Bkg source	Rate @ ROI [c/keV/kg/y]	
of bkg <0.025 c/keV/kg/y	External bkg	< 2.0x10 ⁻³	
	γ Compton from cryostat	< 1.0x10 ⁻³ < 2.0x10 ⁻³	
	Cu holder bulk		
	Cu holder surface	< 2.5x10 ⁻²	
	TeO ₂ bulk/surface	< 5.6x10 ⁻³	

Lucifer ^[21-23]

ZnSe scintillating bolometers (95% enriched ⁸²Se) at ~ 10 mK with double read-out (heat/light) for alpha bkg suppression
 GOAL: demonstrate feasibility of large M exp with this technique @LNGS Cuoricino/CUORE-0 cryostat start ~ 2014

Incident Rediation

Themomete

ββ candidate: ⁸²Se – Q 2995 keV

Source Mass: 17.6 kg 82 Se $- N_{\beta\beta} 1.3 \times 10^{26}$

Projected Bkg: 0.001 c/keV/kg/y

Projected FWHM: ~ 0.17% @ROI Measured FWHM: ~ 0.34% @2615 keV

LY: 7.4 keV/MeV (~3700 phot/MeV)

Sensitivity T^{0v}: 2.3x10²⁶ y in 5 y

Sensitivity <m_{ee}>: <m_{ee}> < 35 ÷ 94 meV in 5y – IH region LowNull, Seoul

Light

AMORE^[24]

100 kg ⁴⁰Ca¹⁰⁰MoO₄ scintillating bolometers (96% ¹⁰⁰Mo enriched, <0.001% ⁴⁸Ca depletion) at low T with double read-out **(heat/light) or shape analysis** for **alpha bkg** suppression @YangYangUL R&D phase

2

~ 780 t Liquid Scintillator 0.1% ^{nat}Nd loaded (5.6% a.i. of ¹⁵⁰Nd) in a Ø6m Acrylic Vessel surrounded by 7000 t ultrapure H₂O and ~9000 PMT.
 @SNO Lab Start ~ 2014

ββ candidate: ¹⁵⁰Nd – Q 3370 keV

Source Mass: 43.7 kg 150 Nd $- N_{\beta\beta} 1.8 \times 10^{26}$

Trade off ΔE / Nd loading

Main Bkg:

Th/U in LS ->negligible and tagged $2\nu\beta\beta \rightarrow$ Spectrum shape fit at End Point ⁸B solar ν

Schedule:

- 2011:- Finish cavity
 - AV hold-down-net
 - Sand in AV
- 2012: LS process system
 - Water fill: cal runs
- 2013: Pure LS phase
- 2014: Nd-loaded phase
- Then: 0.3% Nd loading?

- ¹⁵⁰Nd enrichment?

Projected FWHM: ~ 6.4% @ROI

Sensitivity $T_{1/2}^{0v}$: 7.7x10²⁴ in 5 y

Sensitivity <m_{ee}>: <m_{ee}> < 172 ÷ 180 meV in 5 y -QD region LowNu11, Seoul Silvia Cap

Kamland-Zen ^[26] See Y.Gando talk

29

~16 t (40 t in 2nd phase) Liquid Scintillator 2.5wt% enrXe loaded (91% enrichment of ¹³⁶Xe) in a Ø3.4m Mini Baloon in Kamland detector (1000t LS+Buffer Oil+Water Cherenkov Outer Detector) @Kamioka mine 1st Phase~ end 2011 2nd Phase >2013-2015

ββ candidate: ¹³⁶Xe – Q 2476 keV

Source Mass:

2

1st Phase: 364 kg 136 Xe $- N_{\beta\beta}$ 1.6 x10²⁷ 2nd Phase: 910 kg 136 Xe $- N_{\beta\beta}$ 4.0 x10²⁷

Main Bkg:

 $\begin{array}{l} 2\nu\beta\beta \ ^{136}\text{Xe} \rightarrow \text{slow: } \text{T}_{_{1/2}}\text{\sim}10^{22} \text{ y} \\ ^{10}\text{C}, \ ^{11}\text{Be in LS} \rightarrow 1/10 \text{ with tag} \\ ^{8}\text{B solar }\nu \\ ^{214}\text{Bi}, \ ^{208}\text{TI from MB contam.} \rightarrow \text{vertex cut} \\ \text{=> expected S/Bkg ~ 2} \end{array}$

Measured FWHM: ~ 10% @ROI

2nd Phase: Brighter LS + Winstone Cones

CANDLES^[27]

CANDLES-III: 96 CaF, scintillators (0.187% ai of ⁴⁸Ca) in a granular structure (~305 kg)

with 4π LS active shield and H₂O buffer passive shield

GOAL: 1st step towards a ~tons CaF₂ experiment for IH

@Kamioka mine

2

1st phase: commissioning started in June 2011 2nd phase: enrichm.?

ββ candidate: ⁴⁸Ca – Q 4270 keV !!

Source Mass:

 1^{st} phase: 350 g 48 Ca - N_{BB} 4.4 x 10^{24} 2nd phase: $N_{BB} \sim 10^{26}$

Bkg Strategy:

- $2\nu\beta\beta$ negligible if ΔE 4% FWHM
- 4π LS shield for external γ
- PSD + time/position (internal Bi-Po,Bi-TI)
- => ~ bkg free experiment

Measured FWHM: ~ 3.4% @ROI Target Sensitivity: 1^{st} phase: $<m_{ee} > ~ 500$ meV @3 y – QD region 2nd phase: **IH region**

LowNu11, Seoul

30

EXO ^[28,29]

~ 1 ton TPC of liquid ^{enr}Xe (80.6% of ¹³⁶Xe) at 167 K with double read-out (ion+scint) allowing event 3D tracking and α/β discrimination + Ba⁺ daughter tag for free bkg exp. GOAL of EXO-200: 1st step without Ba⁺ tag for QD region

@WIPP Exo-200: Started 2011 – $2\nu\beta\beta$ result: $T_{1/2} \sim 2.1 \times 10^{21}$ y

Start Exo-full ?

ββ candidate: 136 Xe – Q 2476 keV

Source Mass:

Exo-200: ~ 50 kg FMass 136 Xe $- N_{_{BB}} 2.3 \times 10^{26}$

Bkg Strategy:

- low activity materials / LXe purity check
- conventional screening techniques+ FV cut
- 3D track (double grid (xy) + Avalanche Photo Diodes (t_0 ->z))
- α/β discrimination through ion. vs. light
- Ba⁺ tag with Resonant Ionization Spectrosc.
 Projected Bkg: ~ 10⁻⁴ c/keV/kg/y

Projected FWHM: ~ 3.7% @ROI (maybe better if gas Xe)

Target Sensitivity:

Exo-200: $T_{1/2} \sim 6.4 \times 10^{25}$ y @2y <m_{ee} > < 87 ÷ 224 meV in 2y Exo-full: $T_{1/2} \sim 2.0 \times 10^{27}$ y @ 5y <m_{ee} > < 16 ÷ 40 meV in 5y

LowNu11, Seoul

Silvia Capelli - ββ0v: experimental review

3

NEXT-100^[29]

119 kg High Pressure Gas- enrXe EL TPC (~ 90% of ¹³⁶Xe) at 15 bar with double read-out
(ion+scint/EL) allowing good ΔE + event 3D tracking and topology for a free bkg exp.
@SLC Next-1: on-going Next-100: ~ 2015 Future 1t?

3

COBRA [30]

Multi-hit

Solid state TPC made of a Large Array (total 420 kg) of CdZnTe smc detectors (¹¹⁶Cd enr.) at room temperature with tracking capability. @LNGS

1cm

1.5cm

CPG:

R&D: on-going with 2 types of det. COBRA: technical design report ~2013

ββ candidate: 9 candidates Most promising (high Q) ¹¹⁶Cd – Q 2809 keV

2 types of detectors under consideration:

- CoPlanar Grid Detectors (CPG)
 - * little "location" info (with PSA) + simple read-out
- Pixelated Detectors
 - * 3D "location" + Particle ID if small pixels.
 - * Complex read-out

Bkg Strategy:

3

- low activity materials
- Conventional screening techniques
- R&D for operation in LS (active veto)
- Multi/Single hit event with both types
- Tracking with Pixelated + topology (small Pix)

Projected ΔE : < 2 (1) % @ROI with CGD(Pix)

Target Sensitivity:

```
< m_{ee} > \sim 50 \text{ meV} - IH region
```

LowNu11, Seoul

1.4cm

SuperNEMO [31]

20 modules of **tracker-calorimeter** with 40 mg/cm² source foil each (~5 kg ⁸²Se each). @LSM Demonstrator (1 module) start-up ~ 2013 Full: start-up ~ 2014

ββ candidate: ⁸²Se – Q 2995 keV

Source mass:

Demonstrator: 5 kg 82 Se - N_{$\beta\beta$} 1.8 x10²⁵ Full: 100 kg 82 Se - N_{$\beta\beta$} 7.3 x10²⁵

Bkg Strategy:

- Standard shieldings
- Low ²⁰⁸TI/²¹⁴Bi contam. in source foils
- tracking
- $2\nu\beta\beta$ reduced with better ΔE

Measured ΔE : ~4 % @ROI with best calorimeter/PMT choice

Target Sensitivity:

Demonstrator: KK claim within 2015 Full: $T_{1/2}^{0v} \sim 1.2 \times 10^{26} 90\%$ CL @ 5y $< m_{ee} > \sim 40-105 \text{ meV}$ @ 5y – IH region

Single-Module: 5x4x1 m³

Calorimeter: PVT (plastic scintillator) + PMT (~550/module)

Silvia Capelli - ββ0v: experimental review

MOON ^[32-33]

Multi-layer detector modules: PL scint. planes (E+t) / PL-fibers (V, ϕ) / 50mg/cm² source foils@Oto U.L.MOON-1: prototype ~ 20063 Phases of increasing mass (start Phase-III ?)

ββ candidate: ⁸²Se – Q 2995 keV ¹⁰⁰Mo – Q 3134 keV

Source mass:

Phase-I: 0.03 t isotope Phase-II: 0.12 t isotope Phase-III: 0.48 t isotope (3x10²⁷ N_B)

Bkg Strategy:

- Standard shieldings
- Active veto from Multi-layer structure
- Low ²⁰⁸TI/²¹⁴Bi contam. in source foils
- M=2 event with same Vertex
- E1+E2 @ROI (Q- ΔE_{source} within 3σ)
- no delayed coincidence (Δt ~hours)
- $2\nu\beta\beta$ reduced with good ΔE

Measured $\Delta E: \sigma \sim 2.2 \%$ @ROI (Foreseen $\sigma \sim 1.7 \%$)

Target Sensitivity:

Phase-I: $T_{1/2}^{0_{v}} \sim 0.32(0.15) \times 10^{26}$ @ 1y for Se(Mo) - QD region

Phase-III: T 0v ~ 5.90(2.00) x10²⁶ **@** 1y for Se(Mo) -IH region LowNu11, Seoul Silvia Capelli - ββ0v: experimental review

PL plate

1 unit

PL Plate

1.5cm

X&Y Fiber Planes (0.3mm)

PMT

ββSource Film

50mg/cm2

35

PMT

PMT

Drift Chamber Beta-ray Analyzer [34,35]

Momentum analyzer consisting of tracking detectors (DC) with solenoid magnet for uniform B@KEKDCBA-T2: prototype~ 2009DCBA-T3 in construction for ∆E improvementsFuture: MTD-full ~200 mol ¹⁵⁰Nd sourceStart ?

ββ candidate: ¹⁵⁰Nd – Q 3370 keV

Source mass:

DCBA-T2: 0.03 mol ¹⁰⁰Mo for test with $2\nu\beta\beta$ DCBA-T3: 0.18 mol ¹⁵⁰Nd (^{nat}Nd₂O₃ foils) **MTD-1**: 1.3x10²⁶ ¹⁵⁰Nd (^{enr}Nd₂O₃ - 60% enr) **MTD-full**: 10 x MTD-1

Bkg Strategy:

-Vetoes for cosmic rays -3D track in uniform B (search for 2 circled curves in X,Y + sin in Z) -p and T from track

DCBA-T2 ∆E FWHM: ~6.2 % @ROI **DCBA-T3** foreseen ~3.4 % (>B)

Target Sensitivity:DCBA-T3: $<m_{ee} > ~ 4$ eVMTD-1: $<m_{ee} > ~ 100$ meVMTD-full: $<m_{ee} > ~ 30$ meV

LowNu11, Seoul

Experiment	ββ candidate	Q-value[keV]	Enrichm.	$N_{\beta\beta} \times 10^{26}$	Start [y]	<m<sub>ee>[meV]@5y</m<sub>
GERDA	⁷⁶ Ge	2039	yes	3.2	2013	73-203
Majorana	⁷⁶ Ge	2039	yes	2.4	2014	106-295
MaGe	⁷⁶ Ge	2039	yes	68	2020	43-120
CUORE	¹³⁰ Te	2527.5	no	9.6	2014	40-94
Lucifer	⁸² Se	2995	yes	1.3	2014	35-94
AMore	¹⁰⁰ Mo	3034	yes	3	?	27-63
SNO+	¹⁵⁰ Nd	3370	no	1.8	2014	172-180
Kamland-Zen	¹³⁶ Xe	2476	yes	4	2013-2015	25
Candles	⁴⁸ Ca	4270	no	0.04	2011	500
Candles-enr	⁴⁸ Ca	4270	yes	1	?	IH
Exo-200	¹³⁶ Xe	2476	yes	2.3	2011	87-221 @2y
Exo-Full	¹³⁶ Xe	2476	yes	20	?	16-40
Next-100	¹³⁶ Xe	2476	yes	4	2015	90 @6y
Next-1t	¹³⁶ Xe	2476	yes	30	?	38 @(3+3)y
COBRA	¹¹⁶ Cd	2809	yes	nd	?	50
SuperNemo	⁸² Se	2995	yes	7.3	2014	40-105
Moon	⁸² Se/ ¹⁰⁰ Mo	2995/3134	yes	30	?	IH
DCBA	¹⁵⁰ Nd	3370	yes	10	?	30
LowNu11, Se	coul	Silvia Capel	lli - ββ0v: experim	ental review		37

Conclusions

- $0\nu\beta\beta$ search is well motivated (L violation, ν nature etc.) and is actually a hot topic
- Claim for evidence in ⁷⁶Ge with $< m_{ee} > \sim 0.3 \text{ eV}$ (DH) at $> 6\sigma$ by part of the HM collaboration
- In 5 y: many 100-200 kg ββ isotope experiments currently under preparation should be able to scrutinize Ge claim in many isotopes
- In 5-10 y: many ~1 ton ββ isotope experiments will enter the IH region (10-50 meV) but without being able to completely cover it.

[1] F.Simkovic et al., Phys. Rev. C77 (2008) 045503

[2] J. Suhonen and O.Civitarese, J. Phys. Conf. Ser. 173 (2009) 012012

[3] J. Menendez et al., Nucl. Phys. A 818 (2009) 139

[4] F. lachello and J.Barea, Phys. Rev. C79 (2009) 044301

[5] S. Pascoli, S.T. Petcov, Phys.Rev. D77 (2008) 113003

[6] H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12 (2001) 147

[7] C.E. Aalseth et al., Phys. Rev. D 65 (2002) 092007

- [8] E. Andreotti et al., Astrop. Phys. 34 (2011) 822-831
- [9] R. Arnold et al., ArXiv:1104.3716v3

[10] R. Bernabei et al., Phys. Lett. B 546 (2002) 23

[11] H.V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 21 (2006) 1547

[12] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198-212

[13] H.V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16 (2001) 2409-2420

[14] A.S. Barabash and V.D.Brudanin, Phys.Atom.Nucl. 74 (2011) 312-317

[15] E. Andreotti et al., ArXiv:1108.4313

[16] R. Bernabei et al., Phys. Lett. B 546 (2002) 23-28

[17] A.C. Ur for GERDA Coll., Nucl.Phys.Proc.Suppl.217 (2011) 38-40

[18] F. Bellini et al., Astrop. Phys. 33 (2010) 169 LowNu11, Seoul Silvia Capelli - ββ0ν: experimental review

Bibliography

- [19] F. Alessandria et al., ArXive:1109.0494v1
- [20] C. Arnaboldi et al., Phys. Rev. C 78 (2008) 035502
- [21] A. Alessandrello et al., Nucl. Phys. B Proc. Suppl. 28 (1992) 233-235
- [22] S. Pirro et al., Phys. Atom. Nucl. 69 (2006) 2109-2116
- [23] C. Arnaboldi et al., Astrop. Phys. 34 (2010) 143-150
- [24] S.J. Lee et al., Astrop. Phys. 34 (2010) 732-737
- [25] J. Maneira for SNO coll., Nucl.Phys.Proc.Suppl. 217 (2011) 50-52
- [26] K. Masayuki talk at ICHEP 2010
- [27] S. Umehara et al., AIP Conf. Proceed. 1235 (2010) 287-293
- [28] G. Razvan on behalf of EXO coll., J. Phys. Conf. Ser. 309 (2011) 012003
- [29] N. Ackerman et al., ArXiv:1108/4193v1
- [30] J.McGrath et al., Nucl. Instrum. Meth. A 615 (2010) 57-61
- [31] Yu.A.Shitov for SuperNEMO Coll., arXiv:1006.4775v2
- [32] H. Ejiri et al., Eur. Phys. J. Spec. Top. 162 (2008) 239-250
- [33] H.Ejiri et al., J. Phys. Soc. Jap. 76 (2007) 114201
- [34] N. Hishihara et al., J. Phys. Conf. Ser. 120 (2008) 052049
- [35] T. Ishikawa et al., Nucl. Instr. And Meth. In Phys. Res. A 628 (2011) 209-211LowNu11, SeoulSilvia Capelli ββ0v: experimental review

Thank you...

Silvia Capelli

Universita` e Sez. INFN di Milano Bicocca Italy